	Networking; hierarchical	Data show	MPI
	structures.	Text book	 Profibus DP
	• Introduction to Field bus	PC	
	systems.		
	• Profibus		
	• Device-net		
	• Introduction to Industrial Ethernet technology.		
	9. An introduction to process vis	ualization	
	10. Definition, explanation the D 11. An overview of SCADA syste	CS systems in indus em	trial application
	10. Definition, explanation the D11. An overview of SCADA systemSpecific Learning Outcomes	CS systems in indus em Resources	trial application Practical
Week	 10. Definition, explanation the D 11. An overview of SCADA syste Specific Learning Outcomes Process visualization, The man 	CS systems in indus em Resources Board	trial application Practical
Week 13-14	 10. Definition, explanation the D 11. An overview of SCADA syste Specific Learning Outcomes Process visualization, The man (human)-machine interface 	CS systems in industem Resources Board Data show	trial application Practical
Week 13-14	 10. Definition, explanation the D 11. An overview of SCADA syste Specific Learning Outcomes Process visualization, The man (human)-machine interface (HMI) 	CS systems in industem Resources Board Data show Text book	trial application Practical
Week 13-14	 10. Definition, explanation the D 11. An overview of SCADA syste Specific Learning Outcomes Process visualization, The man (human)-machine interface (HMI) Distributed Control System (DCS) 	CS systems in induster Resources Board Data show Text book PC	trial application Practical

Subject	Hydraulic and Pneumatic	Course Code	CT322	Theoretical	3hrs / wk
Semester	6	Prerequisite	NT220	Practical	3hrs / wk

Program Learning Component:				
Theoretical classes				
	Specific Learning Outcomes	Resources		
Week 1	 Introduction to pneumatics, i.e. Basic physical concepts. Fluid properties: compressibility, incompressibility; pressure, pressure scales, relative pressure, atmospheric pressure, vacuum pressure, pressure gages; flow rate, relation between flow rate, speed, and pressure. Gas laws: Boyle's law; Charles' law; gay-Lussac's law; the general gas law. Force transmission through a fluid, Pascal's law; the basic concept of a pneumatic system. Advantages and disadvantages of pneumatic systems. 	Data show		
	Specific Learning Outcomes	Resources		
Week 2-3	 Pneumatic energy control, control valves: Directional control valves DCV): Symbols according to ISO 1219 Different types of DCV: cross sections to show their internal parts, operating principles, methods of actuation. Pressure valves: pressure reducing valve, quick exhaust valve, two - pressure valve, shuttle valve. Flow control valves: one-way valve, variable flow control valve, one-way variable flow control valve. Compound valves: time-delay valve, sequence valve, vacuum valve. Simple examples, simple pneumatic machines. 	Data show		
Week	Specific Learning Outcomes	Resources		

4-5	Design of pneumatic machines:	
	6. Motion (step) diagram.	
	7. Simple (one - cylinder) machines.	
	8. Compound (more than a cylinder) machines.	Data show
	9. Over-lapped machines.	
	10. Different examples; methods of overcoming the problem	
	of over-lapping.	
	Specific Learning Outcomes	Resources
	Pneumatic energy generation.	
	1. General concepts: free air, air compression process.	
	2. Compressor design principles.	
	3. A brief description of the mechanism of different types	
	of compressors:	
	 Positive displacement compressors: piston 	
	compressor; diaphragm compressor; vane	
	compressor; screw compressor.	
	• Dynamic compressors: centrifugal compressor,	
	axial flow compressor.	
	4. Compressor staging.	
	5. Compressor capacity control.	
Week	6. Compressor house ventilation.	Data show
6	7. Selecting a Compressor for a system.	
Ũ	8. Installation of Compressor.	
	9. Compressor ancillary equipments: intake/ silencer	
	filter; after cooler; moisture separator; intercooler; air	
	receiver(tank), air receiver sizing; compressed air	
	dryers, refrigeration dryers, absorption dryers;	
	compressed air distribution.	
	• Compressed air servicing (service unit):	
	1. The importance of the service unit for a pneumatic	
	machine.	
	2. The main parts of a service unit:	
	• Air filter.	
	• Pressure regulator.	
	• Pressure gauge.	
	Lubricator	

	Specific Learning Outcomes	Resources
Week 7	 Linear pneumatic actuators(pneumatic cylinders): 1. Single-acting cylinder, diaphragm cylinder. 2. Double-acting cylinders: Pneumatic end-position cushioned cylinders. Rodless cylinders: magnetically coupled, mechanically coupled, belt coupled. Impact cylinders. Swivel (semi-rotary) cylinders. 3. Seals in linear actuators. 4. Linear actuators sizing: calculation of external forces, static thrust force calculations, dynamic force calculation, piston rod buckling, air consumption calculation. 	Data show
	Specific Learning Outcomes	Resources
Week 8	 Rotary pneumatic actuators(pneumatic motors): Motor torque, motor output power, motor speed. Different types of air motors: vane motor; gear motor; radial piston motor; axial piston motor; turbine motor. Air motor sizing and torque calculations. Air motor performance. Pressure and flow regulation on air motors. 	Data show
	Specific Learning Outcomes	Resources
Week 9	 Electropneumatics (electropneumatic systems): Components and assemblies in the electrical signal control section: power supply, switches different types), proximity switches: reed switch, capacitive switch, inductive switch, optical switch), pressure switches. Application of magnetic effect of electrical current, solenoid. Control relays, time delayed relays. Solenoid directional control valves, brief study of different types, piloted valves. Over-lapped machines. Different examples. 	Data show
Week	Specific Learning Outcomes	Resources

10	Hydraulics (hydraulic systems):	
	Introduction to hydraulics, i.e. Basic physical concepts.	
	1. Pressure in liquids, flow rate and velocity, force	
	transmission by liquids (force multipliers), Pascal's law,	
	pressure intensifier, viscosity, flow types, Reynold's	
	number, friction, heat, pressure drop through hydraulic	Data show
	systems, cavitations, power calculation in hydraulic	
	systems.	
	2. Hydraulic fluids, their task, types.	
	3. The concept of power transmission.	
	4. Advantages and disadvantages of hydraulic systems.	
	5. The main parts of a hydraulic system.	
	Specific Learning Outcomes	Resources
	Hydraulic power generation (Hydraulic power pack):	
	1. Hydraulic pumps: the role of a pump in a hydraulic	
	system, pumping theory, pump characteristics.	
	2. Pump types:	
Week	• Fixed displacement pumps: vane pump, piston	
11	pump.	Data show
	• Variable displacement pumps: variable	
	displacement vane pump, : variable displacement	
	vane pump.	
	• Control of variable displacement pumps.	
	3. Others: filter, heater, cooler, reservoir.	
	Specific Learning Outcomes	Resources
	Hydraulic valves:	
	1. Directional control valves DCV):	
	 Symbols according to ISO 1219 	
Wook	• Different types of DCV: cross sections to show	
12	their internal parts, operating principles, methods	Data show
	of actuation.	
	2. Pressure valves: pressure relief valve, pressure regulating	
	valve, shuttle valve.	
	3. Flow control valves: one-way valve (check valve),	
	piloted-check valve, variable flow control valve, one-way	

_____ **(** 79 **)**_____

	variable flow control valve, two-way flow control valve with throttle, .two-way flow control valve with orifice,	
	three-way flow control valve, on-off valve.	
	Specific Learning Outcomes	Resources
Week 13	 Linear hydraulic actuators(hydraulic cylinders): 1. Cylinder construction. 2. Actuator types: ✓ Single-acting cylinder, telescopic cylinder. ✓ Double-acting cylinders: Double-acting cylinder with rods on both ends. Double-acting cylinder with cushioning. Double-acting cylinder with adjustable cushioning. Double-acting telescopic cylinder. Tandem cylinder. 3. Seals in linear hydraulic actuators, stop tubes. 	Data show
	4. Actuators sizing5. Piston rod buckling.	
	Specific Learning Outcomes	Resources
Week 14	 Rotary hydraulic actuators(hydraulic motors): Motor torque, motor displacement (geometric volume), motor output power, motor speed. Different types of air motors: vane motor; external gear motor; internal gear motor; radial piston motor; axial piston motor. Hydraulic motor sizing and torque calculations. Hydraulic motor performance. Motor sizing. Hydraulic motor control: speed control, reversal control. 	Data show
	Specific Learning Outcomes	Resources
Week 15	 Hydraulic accumulators: 1. Role of a hydraulic accumulator in a hydraulic machine. 2. Accumulator sizing. 3. Accumulator calculation. 	Data show

	4. Types of accumulator:	
	• Spring accumulator.	
	• Weight-loaded accumulator.	
	Piston accumulator.	
	Diaphragm accumulator.	
	5. Accumulators in hydraulic circuits.	
Weels	Specific Learning Outcomes	Resources
16	Examples of hydraulic and electrohydraulic machines.	Data show
	Practical classes	
	Specific Learning Outcomes	Resources
Week 3	Performing some experiments to practice the function of directional control valves, and how they control the motion of pneumatic cylinders and motors.	Lab.
	Specific Learning Outcomes	Resources
Week 4	Experimenting the function of the variable flow control valve, and how it controls the speed of pneumatic cylinders and motors.	Lab.
Weels	Specific Learning Outcomes	Resources
5 vv eek	Controlling the advance and return of pneumatic cylinders with time-delay and sequence valve.	Lab.
	Specific Learning Outcomes	Resources
Week 6	Design, simulation and realization of some compound pneumatic machines.	Lab.
	Specific Learning Outcomes	Resources
Week 7	Experimenting the function of electrically actuated (solenoid) directional control valves, and how they control the motion of pneumatic cylinders.	Lab.
	Specific Learning Outcomes	Resources
Week 8	Simple electropneumatic machines with different types of limit switches.	Lab.
Week	Specific Learning Outcomes	Resources

9	Performing some experiments to practice the function of	
	control relays, and how they control Simple	Lab.
	electropneumatic machines.	
	Specific Learning Outcomes	Resources
	• Realization of simple hydraulic machines.	
Week	• Determining the operating pressure by adjusting the	
10-11	pressure relieve valve.	Lah
	• Practicing the function of hydraulic directional control	Lab.
	valves, and how they control the motion of hydraulic	
	cylinders and motors.	
	Specific Learning Outcomes	Resources
Week	Practicing the function of pressure regulating valves, and	
12	how they control they regulate the pressure in hydraulic	Lab.
	machines.	
Weels	Specific Learning Outcomes	Resources
13	Practicing the function of flow control valves, and how they	Lab
10	control they regulate the flow in hydraulic machines.	Lau.
Week	Specific Learning Outcomes	Resources
vveek 14	Practicing the role of hydraulic accumulator in hydraulic	Lab
14	machines.	Lab.
West	Specific Learning Outcomes	Resources
Week	Different examples of hydraulic and electrohydraulic	Lab
15-10	machines.	Lab.

Text books:

- Pneumatic Control for Industrial Automation, by: Peter Rohner& Gordon Smith.
- Industrial Hydraulic Control, by: Peter Rohner.
- Prepared by engineer Emhemmed Al-dardar.